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Abstract
Background and Objectives: The objectives of this study
were: 1) to examine the relationship between forces applied
by each leg as measured by the force plate and the degree
of visually assessed lameness under conditions applicable to
a commercial herd, and 2) to develop an automated
lameness detection algorithm based on the force plate
output.

Methods and Findings: The microcomputer-based
embedded force plate system provides an objective
approach to lameness detection by measuring the force
generated by each individual limb. The force plate device
was installed within an Electronic Sow Feeder (ESF) and
used to monitor a subset of the 120 multiparous gestating
sows housed in a dynamic group over a 21 day period. Each
day sows entered the ESF station one at a time to eat. At
times when the sow stood squarely and applied pressure to
all quadrants of the device, the force applied by each foot
was recorded once per second. Sows were visually scored
for the presence of lameness using a four-point scale
(0=normal to 3=severely lame) on a weekly basis and
classified based on this visual assessment as non-lame
(score ≤ 1) or lame (score ≥ 2). An ensemble learning
method called Random Forest was used to identify the
optimal decision tree for classifying the force plate data into
similar categories of non-lame and lame. A Kappa Statistics
test was used to measure the level of agreement between
the visual scoring and force plate results. Changes in
lameness status, as well as the first day of lameness
identification for each detection method, were also
analyzed. Seven variables were included in the classification
tree with the most weight given to the difference between
the forces applied to the 2 hind legs. The two lameness
detection methods assigned the same lameness

classification in 95% of cases and had substantial agreement
(Kappa Statistic=0.79; P<0.05). However, the classification
tree algorithm detected lameness almost 5 days earlier than
the visual scoring system (P<0.001). Additionally, comparing
lameness of sows from the time of entry into the group,
showed an increase in lameness after the first week
regardless of the lameness scoring method.

Conclusions: Lameness detection typically is based on
subjective visual evaluation, which requires time, training,
and can be biased between and within individuals. Results
demonstrate that under conditions applicable to a
commercial herd, the force plate can accurately detect
lameness sooner than a weekly visual lameness assessment.

Keywords: Sow; Lameness detection; Force plate; Weight
distribution

Introduction
Lameness is a major concern for swine producers as it

negatively affects sow welfare and farm profitability [1].
Lameness is one of the most common reasons for involuntary
sow removals [2] and could become a larger concern as the
swine industry transitions to group sow housing systems [3]. It is
estimated that, on average, 10% of sows are removed due to
lameness [4,5]. This high replacement rate negatively influences
sow longevity and overall herd performance [1,6]. For instance,
first parity sows have smaller litter sizes and litters are lighter
when compared to higher parity sows [7]. This lowers the herd
means litter size and the mean number of pigs weaned per sow
per year [4,8]. Additionally, it has been reported that lame
lactating sows have a lower feed intake which could result in
decreased milk production that results in poor litter
performance [9,10].
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In order to address lameness, an accurate and timely
detection method is needed. Currently, lameness detection is
commonly evaluated by visually observing a sow’s gait and
standing posture and assigning a subjective lameness score.
However, such methodology is highly dependent on the
observers’ training and experience [11,12], and subclinical
lameness could go undetected [13], making lame sow treatment
more challenging before the condition deteriorates.

Efforts to identify sow lameness using objective
methodologies include: footprint analysis, kinematics,
accelerometers, nociceptive threshold testing, digital imagery
[14-17] and an embedded microcomputer-based force plate
[18-21]. Although results are promising, these methodologies
may be complex and time-consuming. Additionally, many of
these tools have only been used in controlled laboratory settings
and their use in commercial swine facilities is unknown. The
embedded microcomputer-based force plate (hereafter referred
to as the force plate system) could be implemented in a
commercial setting as it can be fitted under an Electronic Sow
Feeder (ESF) system. Based on the information collected by the
force plate system, a lameness classification tree can be
obtained for each sow [20]. The objectives of this study were to
utilize the force plate in a commercial setting to determine the
relationship between the force applied by each leg when sows
are in varying degrees of lameness and to develop a lameness
classification tree.

Materials and Methods
This study was conducted under the guidance of the

University of Pennsylvania Institution of Animal Care and Use
Committee protocol number 804656. Additionally, the study was
performed in accordance with the Guide for the Care and Use of
Agricultural Animals in Research and Teaching as issued by the
Federation of Animal Science Societies [22].

The study was managed at the University of Pennsylvania
School of Veterinary Medicine’s Swine Teaching and Research
Center. The force plate device (1.52 mL × 0.56 mW × 0.11 mH)
was installed for 21 days within one of the two Electronic Sow
Feeding (ESF) stations used to feed a single pen of group-housed
gestating sows. Approximately 120 crossbred Large White ×
Landrace sows (PIC 1050) were housed in a large dynamic group
at a space allowance of 2.05 m2 per head. Seventy-six sows
logged force recordings for more than 1 week. The force plate
consisted of four quadrants [right front (RF), left front (LF), right
rear (RR), left rear (LR)] that measured the force (kg) applied by
each sow foot. The force applied was recorded once per second
and accepted after the sow stood squarely and applied pressure
to all quadrants. If a sow applied less than 4.5 kg on two
adjacent quadrants or if the sow did not apply any force to one
quadrant, the information for that recording point was deleted.
For further details regarding the design and data recording
methodology for the force plate, please see [18,20]. In the
present study, the force applied to each sow foot was recorded
during her first daily visit to the ESF.

Lameness was visually assessed on a weekly basis using a
four-point scale where 0=sow moves easy, comfortable on all

feet; 1=sow moves easily, only minor deviation from normal gait;
2=sow exhibits compensatory behaviours such as dipping her
head or arching her back, to account for reduced pressure on
one or more limbs; 3=sow is reluctant to bear weight on one or
more legs making it difficult to move her (Zinpro, Feet first:
locomotion scoring, Eden Prairie, MN).

Statistical analysis
Lameness classification trees: Classification trees were

constructed to identify lame sows using the randomForest
package in R (Liaw A, et al., 2015 Package ‘randomForest’). First,
the percentage of the total force applied by each sow according
to quadrant for each recording point step was calculated. The
force recorded is illustrated for a sound and lame sow
respectively in (Figures 1 and 2).

Figure 1: Force applied1 to each foot2 per second3 for a
sound sow using an embedded microcomputer-based force
plate.
1. The raw force applied to each foot as a percentage of the
sows total body weight
2. All feet: Left Front (LF), Right Front (RF), Left Rear (LR) and
Right Rear (RR) were included
3. The first 100 seconds of data used after making sure the
sow was on the force plate, where each second is unique of
the next

Descriptive statistics included average force (mean), the
standard deviation of the force applied, and skewness (i.e.
measurement to evaluate the degree of asymmetry of the force
applied). Additionally, the 5th percentile (P5) of the force applied
on each quadrant, 95th percentile (P95), range between P95-P5,
maximum and minimum standard deviations for that date,
maximum and minimum skewness, maximum and minimum P5
and P95 and the maximum P95 minus P5 were calculated for
each sow, per day, on each quadrant using SAS v9.3 PROC
MEANS (SAS, Cary, NC).

The P5 value was selected because it provides a more
accurate value for the minimum force applied by the sow
because when she adjusts her weight between limbs, the plate
gives a recording of 0 kg. The P95 provides a more accurate
value for the maximum force applied by the sow, as excessive
force could be applied by the sow when she pushes up on the
feed trough or adjusts her weight.
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Figure 2: Force applied1 to each foot2 per second3 for a lame
sow using an embedded microcomputer-based force plate
1. The raw force applied to each foot as a percentage of the
sows total body weight.
2. All feet: Left Front (LF), Right Front (RF), Left Rear (LR) and
Right Rear (RR) were included
3. The first 100 seconds of data used after making sure the
sow was on the force plate, where each second is unique of
the next

The second step was to calculate the difference between the
force applied between LR-RR, RF-RR, LF-LR, LF-RF, and a
difference of the contralateral measurements (LF-RR)-(RF-LR) for
inclusion in the classification trees. Additionally, the weekly
visual lameness score was used as the deterministic variable for
the creation of the lameness classification trees. Based on the
visual lameness scoring, sows were classified as non-lame (visual
score ≤ 1) or lame (visual score ≥ 2). If a sow was identified as
lame during the weekly assessment, she was considered lame
for the week prior to the lameness identification.

The previously mentioned variables were included in the
creation of the lameness classification trees. In Random Forest
analysis [23], multiple trees are created from the inputted data
(i.e. 1,000 in the present study), which use a subset of the total
daily sow recordings to make a tree. The randomForest package
automatically selects the variables with the more predictive
ability and the variables that were used in the greatest
proportion of trees were considered to be the most valuable to
identify lameness. The value can also be seen in the length of
the branches, as longer branches indicate more valuable
variables [24].

Each specific classification tree was created using randomly
selected sows at different days; this allows validation by
comparing trees created with different sources of information
by testing those cases left out of the creation process for
classifying the sow correctly sound or lame. Each node of the
classification tree represents a test. Each test is associated with
an inequality threshold value. If the inequality is met, the tree
will branch to the left, otherwise, it will branch to the right. At
the end of each branch, either a new node will be created to
follow, or a value of “0” or “1” is reached. A value of “0” means
the sow is classified as sound and a value of “1” represents a
lame sow. The percentage of time the incorrect decision is made
is called the out-of-bag error estimates (oob error) [23]. The oob
error is reported for the entire classification tree process.

After the Random Forest analysis identified a potential best
tree. All records were analyzed against this tree to get to an
overall error rate. This included sow data points that would have
been included in the development of the tree.

Comparison between lameness evaluation systems: A Kappa
Statistics test in SAS v9.3 PROC FREQ (SAS, Cary, NC) was used to
measure the level of agreement between the visual scoring and
force plate results from the classification tree. A Kappa Statistics
considers the likelihood that the results could have been due to
chance; a score of 0 means the results were entirely due to
chance and 1 is perfect agreement between two observations.
Kappa Statistics scores of 0.4 to 0.6 mean a moderate level of
agreement, 0.61 to 0.8 a substantial agreement, and 0.81 to
0.99 almost perfect agreement [25].

Additionally, weekly changes in lameness status between
scoring methods were analyzed using generalized estimated
equations in SAS v9.3 PROC GENMOD (SAS, Cary, NC). The model
included a lameness scoring method, measuring week, and their
interaction. Results are reported as odds ratios with the
associated 95% CI. An odds ratio greater than 1 is indicative of
an increased risk of lameness, whereas an odds ratio less than 1
indicates a reduced risk of lameness compared with the
reference category.

Day of first lameness detection: A univariate generalized
linear mixed model with lameness scoring method included as
the fixed effect was used to identify possible differences in the
time of lameness identification between scoring methods, using
SAS v9.3 PROC GLIMMIX (SAS, Cary, NC). The day for the visual
assessment was considered the day the visual observation took
place. Results are reported as least squares means with their
associated standard errors.

Results

Lameness classification trees
Seven variables were included in the lameness detection

model to accurately detect lameness in sows using the force
plate (Figure 3). The significant variables included LR-RR, P95-P5
for LR, the minimum value of the P95, the standard deviations
for the RF and LF, the average for LF, and the skewness for LF.
The oob error rate for the classification tree created in this study
was 6.8%. The overall error rate for this tree was 4.9%.

Comparison between lameness evaluation systems
Twenty-one days of data collection yielded 956 daily lameness

records for each lameness scoring method. Of the 956
measurements, visual assessment (considering sows as lame/
sound for each day during the week previous to visual scoring)
indicated 99 as lame while the force-plate methodology
indicated 107. The methods agreed on 80 lame and 829 sound
scores across the study period. Furthermore, the lameness
classification tree model and the visual lameness scoring system
had substantial agreement beyond that expected by chance with
a Kappa Statistic of 0.79 (P<0.05).
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Comparing lameness status across weeks showed an increase
in the risk for a sow to become lame from week 1 to week 2
(Odds ratio=1.84; CI=1.13 to 3.02; P<0.05) irrespective of the
scoring method used to assess lameness; however, there was no
difference in the risk for a sow to become lame between week 2
and week 3 (P>0.05).

Day of first lameness detection
The force plate was able to identify lameness 4.62 ± 0.97 days

earlier (P<0.0001) compared to weekly visual lameness scoring.

Figure 3: Lameness classification tree 8.
a. LR-RR=The percentage difference in force applied between
the Left Rear and Right Rear quadrants
b. Range LR=The difference between the sows 95th percentile
value for the force applied in a day and 5th percentile for the
Left Rear quadrant
c. MinP95=The minimum value between the four force plate
quadrants for the 95th percentile quadrant
d. SD RF=The standard deviation of the force plate recordings
for the Right Front quadrant
e. SD LR=The standard deviation of the force plate recordings
for the Left Rear quadrant
f. Avg LF=The mean value for the force applied to the Left
Front quadrant
g. Skew LF=The skew of the recordings for the Left Front
quadrant
h. Each node of the classification tree represents a test. Each
test is associated with an inequality threshold value
(Represented by a letter in this example). If the inequality is
met (i.e. a sows value for LR-RR is less than value a) the tree
will branch to the left, otherwise, it will branch to the right. At
the end of each branch, either a new node will be created to
follow, or a value of “0” or “1” is reached. A value of “0”
means the sow is classified as sound and a value of “1”
represents a lame sow. Visual lameness assessment was
included as a deterministic variable (non-lame [score ≤ 1] or
lame [score ≥ 2])

Discussion
Results from this study suggest that the force plate is able to

accurately detect differences in pressure applied between feet,
and more importantly, lameness status, similar to a visual
assessment, in multiparous sows in a commercial sow breeding
herd [20] showed that data obtained from the force plate can be
used to create classification trees for automated lameness
identification. Interestingly, some variables (i.e. the difference in
force applied by the left and right rear legs, and the minimum
value of the 95th percentile) included in the classification tree
reported in the present study, were not used as potential
sources of information by [20]. It is important to note that [20]
developed individual lameness classification trees for each foot
and thus, some variables, such as the difference between the
pressures applied in two adjacent feet may only become
relevant when classifying lameness status irrespective of the
affected limb. In the present study, the difference in the
pressure applied between the left and right rear legs was
selected as the most important variable for the classification
tree. This was likely due to the fact that 100% of lameness
observed in the present study occurred in the rear legs. The fact
that lameness was observed only in the rear leg agrees with
findings in the literature reporting that hind limbs are most
commonly affected by lameness [26,27]. Furthermore, the fact
that greater range between the 95th and 5th percentile was only
important for the left rear leg could indicate that the majority of
lame sows in this study were lame in the right rear leg; however,
further research is required.

As sows become lame, the maximum pressure exerted
decreases in the affected limb [19], thus the minimum for 95th

percentile decreases, indicating positive lameness detection.
Due to the feeder being positioned slightly to the right of the
sows’ midline, on average, sows needed to apply more pressure
in the left front quadrant to access the feeder. The reason
randomForest selected the standard deviations and the
skewness for certain measurements remain unclear and requires
further investigation.

The oob error rate indicates that a low percentage of sows
received an incorrect lameness classification. The oob error rate
found in the present study was greater than the one reported by
[20] during the first 3 days after lameness induction (i.e. the
period of time where animals were clinically lame; [19] using the
same lameness classification tree methodology. Differences
between studies could be attributed to the fact that the [20]
study was a controlled lameness induced study and the severity
of lameness was similar for all the animals involved across all the
experimental periods. In the present study, lameness severity
varied between sows and between weeks. Nonetheless, the
likelihood that the two lameness detection methods were
similar beyond chance was very high, implying the classification
tree can detect lameness at least as accurate as visual
assessment.

With an increasing number of sows that are group housed,
lameness may become a bigger problem [3], and thus accurate
and timely detection is essential. Results indicate the force plate
can detect lameness almost 5 days sooner than a weekly visual
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lameness assessment. This could be partially explained by the
force plate providing daily recordings instead of weekly
observations. One of our goals was to replicate commercial
herds as close as possible. It is not a common practice in
commercial herds to conduct routine lameness identification but
rather a general daily observation of the breeding herd. Lame
sows usually go unnoticed until clinical signs are very evident. If
an animal was observed clinically lame before the weekly
assessment, the sow was removed from the trial for treatment.
Most of the sows in the present study were mildly lame and
unless the weekly lameness assessment was performed, most
likely they would go unnoticed until the condition has
deteriorated. By comparing the daily force plate information to
the weekly score we were able to identify lameness correctly
before the condition worsens.

This is of vital importance as early detection of lameness is
critical in preventing the condition from deteriorating. Earlier
detection would provide the producer management and
treatment options. Additionally, this system in the future could
create a daily printout of suspected lame animals to be visually
examined, thus increasing worker efficiency and efficacy by
examining one a daily basis only animals that are classified as
lame by the force plate. As the industry transitions to more
third-party audits, the force plate also provides production
companies with an extra safeguard to ensure sows are being
cared for in the most humane way possible.

By the second week of the trial, the likelihood of a sow being
classified as lame increased compared to week 1. The sows used
in this study were in a dynamic group with sows entering and
exiting on a weekly basis, subjecting the sows to constant
regrouping and aggressive interactions to establish social
hierarchy [28].

Conclusion
The lameness classification tree created, based on the

information gathered from the force plate, can accurately detect
lameness earlier than a weekly visual assessment. This could aid
in designing management practices for lame sows that prevent
the condition from deteriorating. Further research needs to be
done in order to validate the lameness classification tree in a
separate sow herd.
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